1,187 research outputs found

    Rack-and-pinion effects in molecular rolling friction

    Full text link
    Rolling lubrication with spherical molecules working as 'nanobearings' has failed experimentally so far, without a full understanding of the physics involved and of the reasons why. Past model simulations and common sense have shown that molecules can only roll when they are not too closely packed to jam. The same type of model simulations now shows in addition that molecular rolling friction can develop deep minima once the molecule's peripheral 'pitch' can match the substrate periodicity, much as ordinary cogwheels do in a rack-and-pinion system. When the pinion-rack matching is bad, the driven molecular rolling becomes discontinuous and noisy, whence energy is dissipated and friction is large. This suggests experiments to be conducted by varying the rack-and-pinion matching. That could be pursued not only by changing molecules and substrates, but also by applying different sliding directions within the same system, or by applying pressure, to change the effective matching.Comment: 5 figure

    Beyond complex Langevin equations II: a positive representation of Feynman path integrals directly in the Minkowski time

    Get PDF
    Recently found positive representation for an arbitrary complex, gaussian weight is used to construct a statistical formulation of gaussian path integrals directly in the Minkowski time. The positivity of Minkowski weights is achieved by doubling the number of real variables. The continuum limit of the new representation exists only if some of the additional couplings tend to infinity and are tuned in a specific way. The construction is then successfully applied to three quantum mechanical examples including a particle in a constant magnetic field -- a simplest prototype of a Wilson line. Further generalizations are shortly discussed and an intriguing interpretation of new variables is alluded to.Comment: 16 pages, 2 figures, references adde

    Precision tests of General Relativity with Matter Waves

    Full text link
    We review the physics of atoms and clocks in weakly curved spacetime, and how each may be used to test the Einstein Equivalence Principle (EEP) in the context of the minimal Standard Model Extension (mSME). We find that conventional clocks and matter-wave interferometers are sensitive to the same kinds of EEP-violating physics. We show that the analogy between matter-waves and clocks remains true for systems beyond the semiclassical limit. We quantitatively compare the experimentally observable signals for EEP violation in matter-wave experiments. We find that comparisons of 6^{6}Li and 7^{7}Li are particularly sensitive to such anomalies. Tests involving unstable isotopes, for which matter-wave interferometers are well suited, may further improve the sensitivity of EEP tests.Comment: Conference Proceedings for talk given in January, 2011 at the Winter Colloquium on the Physics of Quantum Electronics. Submitted to the Journal of Modern Optic

    Generation of Entanglement Outside of the Light Cone

    Full text link
    The Feynman propagator has nonzero values outside of the forward light cone. That does not allow messages to be transmitted faster than the speed of light, but it is shown here that it does allow entanglement and mutual information to be generated at space-like separated points. These effects can be interpreted as being due to the propagation of virtual photons outside of the light cone or as a transfer of pre-existing entanglement from the quantum vacuum. The differences between these two interpretations are discussed.Comment: 25 pages, 7 figures. Additional references and figur

    Implementation of a Quantum Search Algorithm on a Nuclear Magnetic Resonance Quantum Computer

    Full text link
    We demonstrate an implementation of a quantum search algorithm on a two qubit NMR quantum computer based on cytosine.Comment: Six pages, three figure

    Generating reversible circuits from higher-order functional programs

    Full text link
    Boolean reversible circuits are boolean circuits made of reversible elementary gates. Despite their constrained form, they can simulate any boolean function. The synthesis and validation of a reversible circuit simulating a given function is a difficult problem. In 1973, Bennett proposed to generate reversible circuits from traces of execution of Turing machines. In this paper, we propose a novel presentation of this approach, adapted to higher-order programs. Starting with a PCF-like language, we use a monadic representation of the trace of execution to turn a regular boolean program into a circuit-generating code. We show that a circuit traced out of a program computes the same boolean function as the original program. This technique has been successfully applied to generate large oracles with the quantum programming language Quipper.Comment: 21 pages. A shorter preprint has been accepted for publication in the Proceedings of Reversible Computation 2016. The final publication is available at http://link.springer.co

    Violation of the London Law and Onsager-Feynman quantization in multicomponent superconductors

    Full text link
    Non-classical response to rotation is a hallmark of quantum ordered states such as superconductors and superfluids. The rotational responses of all currently known single-component "super" states of matter (superconductors, superfluids and supersolids) are largely described by two fundamental principles and fall into two categories according to whether the systems are composed of charged or neutral particles: the London law relating the angular velocity to a subsequently established magnetic field and the Onsager-Feynman quantization of superfluid velocity. These laws are theoretically shown to be violated in a two-component superconductor such as the projected liquid metallic states of hydrogen and deuterium at high pressures. The rotational responses of liquid metallic hydrogen or deuterium identify them as a new class of dissipationless states; they also directly point to a particular experimental route for verification of their existence.Comment: Nature Physics in print. This is an early version of the paper. The final version will be posted 6 months after its publication Nature Physics, according to the journal polic

    Pricing Exotic Options in a Path Integral Approach

    Full text link
    In the framework of Black-Scholes-Merton model of financial derivatives, a path integral approach to option pricing is presented. A general formula to price European path dependent options on multidimensional assets is obtained and implemented by means of various flexible and efficient algorithms. As an example, we detail the cases of Asian, barrier knock out, reverse cliquet and basket call options, evaluating prices and Greeks. The numerical results are compared with those obtained with other procedures used in quantitative finance and found to be in good agreement. In particular, when pricing at-the-money and out-of-the-money options, the path integral approach exhibits competitive performances.Comment: 21 pages, LaTeX, 3 figures, 6 table
    corecore